Gardening Articles




Plants Are Water

Like all other carbon-based life forms on earth, plants conduct their chemical processes in a water solution. Every substance that plants transport is dissolved in water. When insoluble starches and oils are required for plant energy, enzymes change them back into water-soluble sugars for



movement to other locations. Even cellulose and lignin, insoluble structural materials that plants cannot convert back into soluble materials, are made from molecules that once were in solution. Water is so essential that when a plant can no longer absorb as much water as it is losing, it wilts in self-defense. The drooping leaves transpire (evaporate) less moisture because the sun glances off them. Some weeds can wilt temporarily and resume vigorous growth as soon as their water balance is restored. But most vegetable species aren't as tough-moisture stressed vegetables may survive, but once stressed, the quality of their yield usually drops markedly. Yet in deep, open soil west of the Cascades, most vegetable species may be grown quite successfully with very little or no supplementary irrigation and without mulching, because they're capable of being supplied entirely by water already stored in the soil. Soil's Water-Holding Capacity Soil is capable of holding on to quite a bit of water, mostly by adhesion. For example, I'm sure that at one time or another you have picked up a wet stone from a river or by the sea. A thin film of water clings to its surface. This is adhesion. The more surface area there is, the greater the amount of moisture that can be held by adhesion. If we crushed that stone into dust, we would greatly increase the amount of water that could adhere to the original material. Clay particles, it should be noted, are so small that clay's ability to hold water is not as great as its mathematically computed surface area would indicate. Surface Area of One Gram of Soil Particles Particle type Diameter of particles in mm Number of particles per gm Surface area in sq. cm. Very coarse sand 2.00-1.00 90 11 Coarse sand 1.00-0.50 720 23 Medium sand 0.50-0.25 5,700 45 Fine sand 0.25-0.10 46,000 91 Very fine sand 0.10-0.05 772,000 227 Silt 0.05-0.002 5,776,000 454 Clay Below 0.002 90,260,853,000 8,000,000 Source: Foth, Henry D., _Fundamentals of Soil Science,_ 8th ed. (New York: John Wylie & Sons, 1990). This direct relationship between particle size, surface area, and water-holding capacity is so essential to understanding plant growth that the surface areas presented by various sizes of soil particles have been calculated. Soils are not composed of a single size of particle. If the mix is primarily sand, we call it a sandy soil. If the mix is primarily clay, we call it a clay soil. If the soil is a relatively equal mix of all three, containing no more than 35 percent clay, we call it a loam. Available Moisture (inches of water per foot of soil) Soil Texture Average Amount Very coarse sand 0.5 Coarse sand 0.7 Sandy 1.0 Sandy loam 1.4 Loam 2.0 Clay loam 2.3 Silty clay 2.5 Clay 2.7 Source: _Fundamentals of Soil Science_. Adhering water films can vary greatly in thickness. But if the water molecules adhering to a soil particle become too thick, the force of adhesion becomes too weak to resist the force of gravity, and some water flows deeper into the soil. When water films are relatively thick the soil feels wet and plant roots can easily absorb moisture. "Field capacity" is the term describing soil particles holding all the water they can against the force of gravity. At the other extreme, the thinner the water films become, the more tightly they adhere and the drier the earth feels. At some degree of desiccation, roots are no longer forceful enough to draw on soil moisture as fast as the plants are transpiring. This condition is called the "wilting point." The term "available moisture" refers to the difference between field capacity and the amount of moisture left after the plants have died. Clayey soil can provide plants with three times as much available water as sand, six times as much as a very coarse sandy soil. It might seem logical to conclude that a clayey garden would be the most drought resistant. But there's more to it. For some crops, deep sandy loams can provide just about as much usable moisture as clays. Sandy soils usually allow more extensive root development, so a plant with a naturally aggressive and deep root system may be able to occupy a much larger volume of sandy loam, ultimately coming up with more moisture than it could obtain from a heavy, airless clay. And sandy loams often have a clayey, moisture-rich subsoil. _Because of this interplay of factors, how much available water your own unique garden soil is actually capable of providing and how much you will have to supplement it with irrigation can only be discovered by trial._





Previous: Source: _The Water Encyclopedia_
Next: How Soil Loses Water

Add to del.icio.us Add to Reddit Add to Digg Add to Del.icio.us Add to Google Add to Twitter Add to Stumble Upon
SHARE

Add to Informational Site Network
ADD TO EBOOK